Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 14(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062325

RESUMO

Outer membrane vesicles (OMVs) released from gram-negative bacteria are key elements in bacterial physiology, pathogenesis, and defence. In this study, we investigated the role of Pseudomonas aeruginosa OMVs in the anti-phage defence as well as in the potential sensitization to LPS-specific phages. Using transmission electron microscopy, virion infectivity, and neutralization assays, we have shown that both phages efficiently absorb on free vesicles and are unable to infect P. aeruginosa host. Nevertheless, the accompanying decrease in PFU titre (neutralization) was only observed for myovirus KT28 but not podovirus LUZ7. Next, we verified whether OMVs derived from wild-type PAO1 strain can sensitize the LPS-deficient mutant (Δwbpl PAO1) resistant to tested phages. The flow cytometry experiments proved a quite effective and comparable association of OMVs to Δwbpl PAO1 and wild-type PAO1; however, the growth kinetic curves and one-step growth assay revealed no sensitization event of the OMV-associated phage-resistant P. aeruginosa deletant to LPS-specific phages. Our findings for the first time identify naturally formed OMVs as important players in passive resistance (protection) of P. aeruginosa population to phages, but we disproved the hypothesis of transferring phage receptors to make resistant strains susceptible to LPS-dependent phages.


Assuntos
Vesículas Citoplasmáticas/virologia , Lipopolissacarídeos , Fagos de Pseudomonas , Pseudomonas aeruginosa/virologia , Membrana Externa Bacteriana , Bacteriófagos , Bactérias Gram-Negativas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento
2.
Mem Inst Oswaldo Cruz ; 116: e200443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33566951

RESUMO

BACKGROUND: The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. OBJECTIVE: The objective of this paper is study the biology of SARS-CoV-2 in Vero-E6 cells at the ultrastructural level. METHODS: In this study, we documented, by transmission electron microscopy and real-time reverse transcription polymerase chain reaction (RT-PCR), the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. FINDINGS: The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. MAIN CONCLUSIONS: Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Assuntos
Efeito Citopatogênico Viral , Vesículas Citoplasmáticas/virologia , SARS-CoV-2/fisiologia , Células Vero/virologia , Animais , Chlorocebus aethiops , Endocitose , Retículo Endoplasmático/virologia , Humanos , Microscopia Eletrônica de Transmissão , Nucleocapsídeo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Internalização do Vírus
3.
Mem. Inst. Oswaldo Cruz ; 116: e200443, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1154874

RESUMO

BACKGROUND The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. OBJECTIVE The objective of this paper is study the biology of SARS-CoV-2 in Vero-E6 cells at the ultrastructural level. METHODS In this study, we documented, by transmission electron microscopy and real-time reverse transcription polymerase chain reaction (RT-PCR), the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. FINDINGS The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. MAIN CONCLUSIONS Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Assuntos
Humanos , Animais , Células Vero/virologia , Vesículas Citoplasmáticas/virologia , Efeito Citopatogênico Viral , SARS-CoV-2/fisiologia , Chlorocebus aethiops , Nucleocapsídeo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microscopia Eletrônica de Transmissão , Endocitose , Retículo Endoplasmático/virologia , Internalização do Vírus , Reação em Cadeia da Polimerase em Tempo Real
4.
Nat Commun ; 11(1): 5885, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208793

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic ß-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualize RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We report that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.


Assuntos
Betacoronavirus/química , Betacoronavirus/fisiologia , Replicação Viral , Células A549 , Animais , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Vesículas Citoplasmáticas/virologia , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/virologia , Humanos , Pandemias , Pneumonia Viral/virologia , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2 , Células Vero , Vírion/química , Vírion/metabolismo , Montagem de Vírus
5.
Science ; 369(6509): 1395-1398, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32763915

RESUMO

Coronavirus genome replication is associated with virus-induced cytosolic double-membrane vesicles, which may provide a tailored microenvironment for viral RNA synthesis in the infected cell. However, it is unclear how newly synthesized genomes and messenger RNAs can travel from these sealed replication compartments to the cytosol to ensure their translation and the assembly of progeny virions. In this study, we used cellular cryo-electron microscopy to visualize a molecular pore complex that spans both membranes of the double-membrane vesicle and would allow export of RNA to the cytosol. A hexameric assembly of a large viral transmembrane protein was found to form the core of the crown-shaped complex. This coronavirus-specific structure likely plays a key role in coronavirus replication and thus constitutes a potential drug target.


Assuntos
Vesículas Citoplasmáticas/química , Membranas Intracelulares/química , Vírus da Hepatite Murina/fisiologia , RNA Viral/biossíntese , Replicação Viral , Animais , Microscopia Crioeletrônica , Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Tomografia com Microscopia Eletrônica , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Camundongos , Proteínas não Estruturais Virais/química
6.
Sci Rep ; 10(1): 5658, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221415

RESUMO

Duck plague virus (DPV), a member of the alphaherpesviruses subfamily, causes massive ducks death and results in a devastating hit to duck industries in China. It is of great significance for us to analyze the functions of DPV genes for controlling the outbreak of duck plague. Thus, glycoproteins E (gE) of DPV, which requires viral cell-to-cell spreading and the final envelopment in herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), was chosen herein. The gE mutant virus BAC-CHv-ΔgE was constructed by using a markerless two-step Red recombination system implemented on the DPV genome cloned into a bacterial artificial chromosome (BAC). Viral plaques on duck embryo fibroblast (DEF) cells of BAC-CHv-ΔgE were on average approximately 60% smaller than those produced by BAC-CHv virus. Viral replication kinetics showed that BAC-CHv-ΔgE grew to lower titers than BAC-CHv virus did in DEF cells. Electron microscopy confirmed that deleting of DPV gE resulted in a large number of capsids accumulating around vesicles and very few of them could bud into vesicles. The drastic inhibition of virion formation in the absence of the DPV gE indicated that it played an important role in virion morphogenesis before the final envelopment of intracytoplasmic nucleocapsids.


Assuntos
Alphaherpesvirinae/metabolismo , Capsídeo/metabolismo , Citoplasma/metabolismo , Vesículas Citoplasmáticas/metabolismo , Patos/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Animais , Linhagem Celular , Cromossomos Artificiais Bacterianos/metabolismo , Citoplasma/virologia , Vesículas Citoplasmáticas/virologia , Patos/virologia , Glicoproteínas/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Mardivirus/metabolismo , Montagem de Vírus/fisiologia , Replicação Viral/fisiologia
7.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292247

RESUMO

A/H1N1 2009 pandemic influenza virus (A/H1N1/pdm09) was first identified as a novel pandemic influenza A virus (IAV) in 2009. Previously, we reported that many viral antigens were detected in type II alveolar epithelial cells (AEC-IIs) within autopsied lung tissue from a patient with A/H1N1/pdm09 pneumonia. It is important to identify the association between the virus and host cells to elucidate the pathogenesis of IAV pneumonia. To investigate the distribution of virus particles and morphological changes in host cells, the autopsied lung specimens from this patient were examined using transmission electron microscopy (TEM) and a novel scanning electron microscopy (SEM) method. We focused on AEC-IIs as viral antigen-positive cells and on monocytes/macrophages (Ms/Mϕs) and neutrophils (Neus) as innate immune cells. We identified virus particles and intranuclear dense tubules, which are associated with matrix 1 (M1) proteins from IAV. Large-scale two-dimensional observation was enabled by digitally "stitching" together contiguous SEM images. A single whole-cell analysis using a serial section array (SSA)-SEM identified virus particles in vesicles within the cytoplasm and/or around the surfaces of AEC-IIs, Ms/Mϕs, and Neus; however, intranuclear dense tubules were found only in AEC-IIs. Computer-assisted processing of SSA-SEM images from each cell type enabled three-dimensional (3D) modeling of the distribution of virus particles within an ACE-II, a M/Mϕ, and a Neu.IMPORTANCE Generally, it is difficult to observe IAV particles in postmortem samples from patients with seasonal influenza. In fact, only a few viral antigens are detected in bronchial epithelial cells from autopsied lung sections. Previously, we detected many viral antigens in AEC-IIs from the lung. This was because the majority of A/H1N1/pdm09 in the lung tissue harbored an aspartic acid-to-glycine substitution at position 222 (D222G) of the hemagglutinin protein. A/H1N1/pdm09 harboring the D222G substitution has a receptor-binding preference for α-2,3-linked sialic acids expressed on human AECs and infects them in the same way as H5N1 and H7N9 avian IAVs. Here, we report the first successful observation of virus particles, not only in AEC-IIs, but also in Ms/Mϕs and Neus, using electron microscopy. The finding of a M/Mϕ harboring numerous virus particles within vesicles and at the cell surface suggests that Ms/Mϕs are involved in the pathogenesis of IAV primary pneumonia.


Assuntos
Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/patologia , Influenza Humana/virologia , Pulmão/patologia , Adulto , Autopsia , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Citoplasma/ultraestrutura , Citoplasma/virologia , Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Humanos , Macrófagos/virologia , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Neutrófilos/virologia
8.
Sci Rep ; 9(1): 8682, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213630

RESUMO

Dengue fever is one of the most important mosquito-borne viral infections in large parts of tropical and subtropical countries and is a significant public health concern and socioeconomic burden. There is an urgent need to develop antivirals that can effectively reduce dengue virus (DENV) replication and decrease viral load. Niclosamide, an antiparasitic drug approved for human use, has been recently identified as an effective antiviral agent against a number of pH-dependent viruses, including flaviviruses. Here, we reveal that neutralization of low-pH intracellular compartments by niclosamide affects multiple steps of the DENV infectious cycle. Specifically, niclosamide-induced endosomal neutralization not only prevents viral RNA replication but also affects the maturation of DENV particles, rendering them non-infectious. We found that niclosamide-induced endosomal neutralization prevented E glycoprotein conformational changes on the virion surface of flaviviruses, resulting in the release of non-infectious immature virus particles with uncleaved pr peptide from host cells. Collectively, our findings support the potential application of niclosamide as an antiviral agent against flavivirus infection and highlight a previously uncharacterized mechanism of action of the drug.


Assuntos
Vesículas Citoplasmáticas/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Niclosamida/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/virologia , Vírus da Dengue/genética , Vírus da Dengue/crescimento & desenvolvimento , Endossomos/química , Endossomos/virologia , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/química , Espaço Intracelular/virologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/efeitos dos fármacos , Vírion/genética , Vírion/crescimento & desenvolvimento , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-30509943

RESUMO

Bacterial membrane vesicle research has so far focused mainly on Gram-negative bacteria. Only recently have Gram-positive bacteria been demonstrated to produce and release extracellular membrane vesicles (MVs) that contribute to bacterial virulence. Although treatment of bacteria with antibiotics is a well-established trigger of bacterial MV formation, the underlying mechanisms are poorly understood. In this study, we show that antibiotics can induce MVs through different routes in the important human pathogen Staphylococcus aureus DNA-damaging agents and antibiotics inducing the SOS response triggered vesicle formation in lysogenic strains of S. aureus but not in their phage-devoid counterparts. The ß-lactam antibiotics flucloxacillin and ceftaroline increased vesicle formation in a prophage-independent manner by weakening the peptidoglycan layer. We present evidence that the amount of DNA associated with MVs formed by phage lysis is greater than that for MVs formed by ß-lactam antibiotic-induced blebbing. The purified MVs derived from S. aureus protected the bacteria from challenge with daptomycin, a membrane-targeting antibiotic, both in vitro and ex vivo in whole blood. In addition, the MVs protected S. aureus from killing in whole blood, indicating that antibiotic-induced MVs function as a decoy and thereby contribute to the survival of the bacterium.


Assuntos
Antibacterianos/farmacologia , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/virologia , Lisogenia/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/virologia , Bacteriófagos/fisiologia , Cefalosporinas/farmacologia , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , Daptomicina/farmacologia , Floxacilina/farmacologia , Humanos , Lisogenia/genética , Peptidoglicano/efeitos dos fármacos
10.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068641

RESUMO

Herpes simplex virus (HSV) and other alphaherpesviruses must spread from sites of viral latency in sensory ganglia to peripheral tissues, where the viruses can replicate to higher titers before spreading to other hosts. These viruses move in neuronal axons from ganglia to the periphery propelled by kinesin motors moving along microtubules. Two forms of HSV particles undergo this anterograde transport in axons: (i) unenveloped capsids that become enveloped after reaching axon tips and (ii) enveloped virions that are transported within membrane vesicles in axons. Fundamental to understanding this axonal transport is the question of which of many different axonal kinesins convey HSV particles. Knowing which kinesins promote axonal transport would provide clues to the identity of HSV proteins that tether onto kinesins. Prominent among axonal kinesins are the kinesin-1 (KIF5A, -5B, and -5C) and kinesin-3 (e.g., KIF1A and -1B) families. We characterized fluorescent forms of cellular cargo molecules to determine if enveloped HSV particles were present in the vesicles containing these cargos. Kinesin-1 cargo proteins were present in vesicles containing HSV particles, but not kinesin-3 cargos. Fluorescent kinesin-1 protein KIF5C extensively colocalized with HSV particles, while fluorescent kinesin-1 KIF1A did not. Silencing of kinesin-1 proteins KIF5A, -5B, and -5C or light chains KLC1 and KLC2 inhibited the majority of HSV anterograde transport, while silencing of KIF1A had little effect on HSV transport in axons. We concluded that kinesin-1 proteins are important in the anterograde transport of the majority of HSV enveloped virions in neuronal axons and kinesin-3 proteins are less important.IMPORTANCE Herpes simplex virus (HSV) and other alphaherpesviruses, such as varicella-zoster virus, depend upon the capacity to navigate in neuronal axons. To do this, virus particles tether onto dyneins and kinesins that motor along microtubules from axon tips to neuronal cell bodies (retrograde) or from cell bodies to axon tips (anterograde). Following reactivation from latency, alphaherpesviruses absolutely depend upon anterograde transport of virus particles in axons in order to reinfect peripheral tissues and spread to other hosts. Which of the many axonal kinesins transport HSV in axons is not clear. We characterized fluorescent cellular cargo molecules and kinesins to provide evidence that HSV enveloped particles are ferried by kinesin-1 proteins KIF5A, -5B, and -5C and their light chains, KLC1 and KLC2, in axons. Moreover, we obtained evidence that kinesin-1 proteins are functionally important in anterograde transport of HSV virions by silencing these proteins.


Assuntos
Axônios/virologia , Vesículas Citoplasmáticas/virologia , Cinesinas/metabolismo , Simplexvirus/fisiologia , Vírion/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Inativação Gênica , Cinesinas/genética , Camundongos
11.
J Infect Dis ; 218(10): 1592-1601, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29986093

RESUMO

Background: Varicella zoster virus (VZV) may cause encephalitis, both with and without rash. Here we investigate whether viruses recovered from the central nervous system (CNS; encephalitis or meningitis) differ genetically from those recovered from non-CNS samples. Methods: Enrichment-based deep sequencing of 45 VZV genomes from cerebral spinal fluid (CSF), plasma, bronchoalveolar lavage (BAL), and vesicles was carried out with samples collected from 34 patients with and without VZV infection of the CNS. Results: Viral sequences from multiple sites in the same patient were identical at the consensus level. Virus from vesicle fluid and CSF in cases of meningitis showed low-level diversity. By contrast, plasma, BAL, and encephalitis had higher numbers of variant alleles. Two CSF-encephalitis samples had high genetic diversity, with variant frequency patterns typical of mixed infections with different clades. Conclusions: Low viral genetic diversity in vesicle fluid is compatible with previous observations that VZV skin lesions arise from single or low numbers of virions. A similar result was observed in VZV from cases of VZV meningitis, a generally self-limiting infection. CSF from cases of encephalitis had higher diversity with evidence for mixed clade infections in 2 cases. We hypothesize that reactivation from multiple neurons may contribute to the pathogenesis of VZV encephalitis.


Assuntos
DNA Viral/líquido cefalorraquidiano , Encefalite por Varicela Zoster/virologia , Herpesvirus Humano 3/classificação , Herpesvirus Humano 3/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Coinfecção/virologia , Vesículas Citoplasmáticas/virologia , Variação Genética , Genoma Viral/genética , Humanos , Pessoa de Meia-Idade , Carga Viral , Adulto Jovem
12.
mBio ; 8(6)2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162711

RESUMO

Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp's) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation.IMPORTANCE The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp's) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Linhagem Celular , Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Biogênese de Organelas , Proteólise , Proteínas não Estruturais Virais/metabolismo
13.
Virology ; 506: 130-140, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388487

RESUMO

Flavivirus genome encodes seven non-structural proteins (NSPs) and these NSPs are believed to be involved in their genomic RNA replication, of which the mechanism is unclear. We find that West Nile virus (WNV) NSPs were capable of self-assembling membranous vesicles in cells, which are composed of the host endoplasmic reticulum membrane integrated with viral NS1 and NS4A, and possibly NS2A. The vesicles can further organize into replication complex (RC)-associated vesicles which combine both the vesicle and predicted RC components. The authentic RC-associated vesicles were observed in cells transfected with infectious WNV cDNA as well as WNV replicon. Further mutational analysis showed that WNV/DENV heterologous NS polyproteins derived from lethal chimeric recombinants produced abnormal vesicles. Site-directed mutation of either NS2A or NS4A, which resulted in failure of viral RNA replication, caused immature vesicles too. These findings reveal molecular composition and assembly of the virus-specific nanomachine and confirm that these structures are used for the viral RNA replication.


Assuntos
Vesículas Citoplasmáticas/virologia , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linhagem Celular , Retículo Endoplasmático/virologia , Proteínas não Estruturais Virais/genética , Replicação Viral , Vírus do Nilo Ocidental/genética
14.
J Virol ; 90(18): 8032-5, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412595

RESUMO

Incoming human papillomavirus (HPV) utilize vesicular transport to traffic from the plasma membrane to the trans-Golgi network. Following nuclear envelope breakdown during mitosis, the viral DNA associates with condensed chromosomes utilizing spindle microtubules for delivery. Most intriguingly, the viral DNA resides in a transport vesicle until mitosis is completed and the nuclear envelope has reformed. This finding provides support for the transient existence of nuclear membrane-bound vesicles. Due to their transient nature, it also points to the existence of a cell pathway for the disposal of vesicles ending up fortuitously or purposefully in the nucleus.


Assuntos
Papillomaviridae/fisiologia , Internalização do Vírus , Vesículas Citoplasmáticas/virologia , Endocitose , Humanos
15.
Proc Natl Acad Sci U S A ; 113(22): 6289-94, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27190090

RESUMO

During the entry process, the human papillomavirus (HPV) capsid is trafficked to the trans-Golgi network (TGN), whereupon it enters the nucleus during mitosis. We previously demonstrated that the minor capsid protein L2 assumes a transmembranous conformation in the TGN. Here we provide evidence that the incoming viral genome dissociates from the TGN and associates with microtubules after the onset of mitosis. Deposition onto mitotic chromosomes is L2-mediated. Using differential staining of an incoming viral genome by small molecular dyes in selectively permeabilized cells, nuclease protection, and flotation assays, we found that HPV resides in a membrane-bound vesicle until mitosis is completed and the nuclear envelope has reformed. As a result, expression of the incoming viral genome is delayed. Taken together, these data provide evidence that HPV has evolved a unique strategy for delivering the viral genome to the nucleus of dividing cells. Furthermore, it is unlikely that nuclear vesicles are unique to HPV, and thus we may have uncovered a hitherto unrecognized cellular pathway that may be of interest for future cell biological studies.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Genoma Viral , Papillomavirus Humano 16/fisiologia , Mitose/fisiologia , Infecções por Papillomavirus/virologia , Vírion , Internalização do Vírus , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Vesículas Citoplasmáticas/virologia , Endossomos/metabolismo , Endossomos/virologia , Células HeLa , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Transporte Proteico , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
16.
Cell Microbiol ; 18(12): 1691-1708, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27218226

RESUMO

Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes containing the replicase proteins, the viral RNA and host proteins. The formation of the replication and transcription complexes (RTCs) through the rearrangement of cellular membranes is currently being actively studied for viruses belonging to different viral families. In this work, we identified double-membrane vesicles (DMVs) in the cytoplasm of cells infected with the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae family, Nidovirales order). Using confocal microscopy and transmission electron microscopy, we observed a close relationship between the RTCs and the DMVs of BEV. The examination of BEV-infected cells revealed that the replicase proteins colocalize with each other and with newly synthesized RNA and are associated to the membrane rearrangement induced by BEV. However, the double-stranded RNA, an intermediate of viral replication, is exclusively limited to the interior of DMVs. Our results with BEV resemble those obtained with other related viruses in the Nidovirales order, thus providing new evidence to support the idea that nidoviruses share a common replicative structure based on the DMV arranged clusters.


Assuntos
Vesículas Citoplasmáticas/ultraestrutura , Membranas Intracelulares/ultraestrutura , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Torovirus/ultraestrutura , Proteínas Virais/genética , Replicação Viral , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/virologia , Derme , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Cavalos , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Microscopia Eletrônica de Transmissão , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Transdução de Sinais , Torovirus/genética , Torovirus/metabolismo , Proteínas Virais/metabolismo
17.
Sci Rep ; 6: 23864, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029407

RESUMO

Autophagy is an evolutionarily ancient pathway that has been shown to be important in the innate immune defense against several viruses. However, little is known about the regulatory role of autophagy in transmissible gastroenteritis virus (TGEV) replication. In this study, we found that TGEV infection increased the number of autophagosome-like double- and single-membrane vesicles in the cytoplasm of host cells, a phenomenon that is known to be related to autophagy. In addition, virus replication was required for the increased amount of the autophagosome marker protein LC3-II. Autophagic flux occurred in TGEV-infected cells, suggesting that TGEV infection triggered a complete autophagic response. When autophagy was pharmacologically inhibited by wortmannin or LY294002, TGEV replication increased. The increase in virus yield via autophagy inhibition was further confirmed by the use of siRNA duplexes, through which three proteins required for autophagy were depleted. Furthermore, TGEV replication was inhibited when autophagy was activated by rapamycin. The antiviral response of autophagy was confirmed by using siRNA to reduce the expression of gene p300, which otherwise inhibits autophagy. Together, the results indicate that TGEV infection activates autophagy and that autophagy then inhibits further TGEV replication.


Assuntos
Autofagia/genética , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Vírus da Gastroenterite Transmissível/fisiologia , Fatores de Transcrição de p300-CBP/genética , Androstadienos/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/antagonistas & inibidores , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular , Cromonas/farmacologia , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Morfolinas/farmacologia , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Suínos , Vírus da Gastroenterite Transmissível/patogenicidade , Replicação Viral/efeitos dos fármacos , Wortmanina , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo
18.
J Virol ; 90(11): 5246-55, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984730

RESUMO

UNLABELLED: Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described. IMPORTANCE: Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses.


Assuntos
Acanthamoeba/virologia , Vesículas Citoplasmáticas/virologia , Vírus Gigantes/fisiologia , Internalização do Vírus , Animais , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Genoma Viral , Vírus Gigantes/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fagocitose , Filogenia , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura , Replicação Viral
19.
Sci Rep ; 5: 17990, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26657027

RESUMO

The levels of neutralizing antibody to a pathogen are an effective indicator to predict efficacy of a vaccine in trial. And yet not all the trial vaccines are in line with the theory. Using dengue virus (DENV) to investigate the viral morphology affecting the predictive value, we evaluated the viral morphology in acute dengue plasma compared to that of Vero cells derived DENV. The virions in plasma were infectious and heterogeneous in shape with a "sunny-side up egg" appearance, viral RNA was enclosed with CD61+ cell-derived membrane interspersed by the viral envelope protein, defined as dengue vesicles. The unique viral features were also observed from ex vivo infected human bone marrow. Dengue vesicles were less efficiently neutralized by convalescent patient serum, compared to virions produced from Vero cells. Our results exhibit a reason why potencies of protective immunity fail in vivo and significantly impact dengue vaccine and drug development.


Assuntos
Vírus da Dengue/fisiologia , Dengue/metabolismo , Dengue/virologia , Integrina beta3/metabolismo , Animais , Transporte Biológico , Células da Medula Óssea/metabolismo , Células da Medula Óssea/virologia , Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Chlorocebus aethiops , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/virologia , Dengue/imunologia , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/ultraestrutura , Humanos , Megacariócitos/metabolismo , Megacariócitos/virologia , Fenótipo , Sorogrupo , Células Vero , Carga Viral , Vírion/ultraestrutura
20.
Viruses ; 7(10): 5305-18, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26473912

RESUMO

Replication of the poliovirus genome is localized to cytoplasmic replication factories that are fashioned out of a mixture of viral proteins, scavenged cellular components, and new components that are synthesized within the cell due to viral manipulation/up-regulation of protein and phospholipid synthesis. These membranous replication factories are quite complex, and include markers from multiple cytoplasmic cellular organelles. This review focuses on the role of electron microscopy in advancing our understanding of poliovirus RNA replication factories. Structural data from the literature provide the basis for interpreting a wide range of biochemical studies that have been published on virus-induced lipid biosynthesis. In combination, structural and biochemical experiments elucidate the dramatic membrane remodeling that is a hallmark of poliovirus infection. Temporal and spatial membrane modifications throughout the infection cycle are discussed. Early electron microscopy studies of morphological changes following viral infection are re-considered in light of more recent data on viral manipulation of lipid and protein biosynthesis. These data suggest the existence of distinct subcellular vesicle populations, each of which serves specialized roles in poliovirus replication processes.


Assuntos
Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Metabolismo dos Lipídeos , Microscopia Eletrônica/métodos , Poliovirus/fisiologia , Replicação Viral , Interações Hospedeiro-Patógeno , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...